DDoS Attack

Landscapes
Introduction

➔ General opinion AKA DDoS skeptics
➔ Denial of Service attacks are a fact of life on the Internet
➔ Service disruption
➔ Sometimes employed as a “smoke screen”
➔ What this talk is and what it is not
➔ Vendor independant
Trends visualization

DDoS Size and Frequency as a Function of Time

Source: Akamai’s State of the Internet Report
History

<1999 - SYN floods, Smurf Attack, Ping of death, first distributed attack tools (‘fapi’)
2000 - bundled with rootkits, first botnets controlled via ÍRC
2001 - First major attack involving DNS servers as reflectors
2002 - Attacks disrupted service at 9 of the 13 DNS root servers (also 2007 & 2015).
2003 - First DDoS mitigation services arise
2005 - 8 Gbps largest attack size
2009 - Iranian election protests
2012 - Operation Ababil
2014 - 400+ Gbps largest attack size
2015 - DD4BC emerge & The Great Canon of China
2016 - 600Gbps attack against BBC
2016 - MIT DDoS
Motivation

➔ Motives:
◆ Revenge
◆ Blackmail
◆ Extortion
◆ Hacktivism
◆ business feud
◆ leveling up

➔ Groups
◆ Anonymous
◆ Lizard Squad
◆ DD4BC
◆ Armada Collective
◆ New World Hacking
◆ ...
Hello,

To introduce ourselves first:
http://bitcoinbountyhunter.com/bitalo.html
Or just google “DD4BC” and you will find more info.

So, it’s your turn! All servers of [REDACTED] group (internationally) are going under DDoS attack unless you pay 40 Bitcoin. Pay to 16HH1Se5zhXgqe4EBAK2xdyHump5MiYgrQ Please note that it will not be easy to mitigate our attack, because our current UDP flood power is 400-500 Gbps. Right now we are running small demonstrative attack on one of your IPs: [REDACTED]. Don’t worry, it will not be hard (we will try not to crash it at the moment) and will stop in 1 hour. It’s just to prove that we are serious.

We are aware that you probably don’t have 40 BTC at the moment, so we are giving you 24 hours to get it and pay us. Find the best exchanger for you on howtobuybitcoins.info or localbitcoins.com You can pay directly through exchanger to our BTC address, you don’t even need to have BTC wallet. Current price of 1 BTC is about 250 USD, so we are cheap, at the moment. But if you ignore us, price will increase.

IMPORTANT: You don’t even have to reply. Just pay 40 BTC to 16HH1Se5zhXgqe4EBAK2xdyHump5MiYgrQ — we will know it’s you and you will never hear from us again.
We say it because for big companies it’s usually the problem as they don’t want that there is proof that they cooperated.

If you need to contact us, use Bitmessage: BM NCljRewNdHx3jHrufjxDwRwxGdnIsY5 But if you ignore us, and don’t pay within 24 hours, long term attack will start, price to stop will go to 100 BTC and will keep increasing for every hour of attack. Many of our “clients” believe that if they pay us once, we will be back. That’s not how we work – we never attack the same target after we are paid. If you are thinking about reporting this to authorities, feel free to try. But it won’t help. We are not amateurs.

REMEMBER THIS: It’s a one-time payment. Pay and you will not hear from us ever again!
We do bad things, but we keep our word.
Thank you
Mechanisms

- why are DDoS attacks possible?
- volumetric attacks vs resource starvation
- infrastructure vs application attacks
- attacker bandwidth > victim bandwidth
- bps vs pps, packet storms
- stealth/creeper
- scouting & recruitment
- botnet spawned by malware
Infrastructure DDoS

- ACK, RST, FIN, PSH, URG (Out-of-state floods)
- XMAS, TCP anomaly
- SYN
- CHARGEN
- DNS
- ICMP
- RIP
- SSDP
- NTP
- UDP (FRAGMENTS)
UDP-based Amplification

- ip address spoofing
- Fire & Forget
- DNS Reflection is so 2014
- NTP amplification as easy as (UDP port) 123
- UDP Fragments
- Vulnerable services
 - MON_GETLIST
 - Open resolvers

Source: blog.cloudflare.com
Amplification factor

➔ DNS - 28 to 54x
➔ NTP - 556.9x
➔ SSDP - 30.8x
➔ CharGen - 358.8x
➔ RIPv1 - 131.24x
freya:ntp tuna$ ntpdc -c monlist 10.1.10.128
remote address count m ver rstr avgint lstint
port local address

<table>
<thead>
<tr>
<th>Address</th>
<th>Count</th>
<th>M</th>
<th>Ver</th>
<th>RSTR</th>
<th>Avgint</th>
<th>LSTINT</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1.10.30</td>
<td>59986</td>
<td>18</td>
<td>7</td>
<td>2</td>
<td>0</td>
<td>128</td>
</tr>
<tr>
<td>nist1-sj.ustiming.org</td>
<td>123</td>
<td>18</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>76</td>
</tr>
<tr>
<td>nist1-la.ustiming.org</td>
<td>123</td>
<td>18</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>80</td>
</tr>
<tr>
<td>time-b.timefreq.blrdro</td>
<td>123</td>
<td>19</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>65</td>
</tr>
<tr>
<td>198.60.73.8</td>
<td>123</td>
<td>20</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>64</td>
</tr>
<tr>
<td>time-a.timefreq.blrdro</td>
<td>123</td>
<td>20</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>64</td>
</tr>
<tr>
<td>nist2.timefreq.blrdro</td>
<td>123</td>
<td>20</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>64</td>
</tr>
<tr>
<td>nist.timestabletransi</td>
<td>123</td>
<td>20</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>64</td>
</tr>
<tr>
<td>64.250.177.145</td>
<td>123</td>
<td>20</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>64</td>
</tr>
<tr>
<td>time-bnist.gov</td>
<td>123</td>
<td>20</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>64</td>
</tr>
<tr>
<td>nist-time-server.eoni.org</td>
<td>123</td>
<td>20</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>64</td>
</tr>
<tr>
<td>ntp.sunflower.com</td>
<td>123</td>
<td>20</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>64</td>
</tr>
<tr>
<td>nist1-nj2.ustiming.org</td>
<td>123</td>
<td>20</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>64</td>
</tr>
<tr>
<td>barricade.rack911.com</td>
<td>123</td>
<td>20</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>64</td>
</tr>
<tr>
<td>nist-nj.ustiming.org</td>
<td>123</td>
<td>20</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>64</td>
</tr>
<tr>
<td>time-a.nist.gov</td>
<td>123</td>
<td>20</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>64</td>
</tr>
<tr>
<td>tds-solutions.net</td>
<td>131.107.13.100</td>
<td>20</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>64</td>
</tr>
<tr>
<td>nist1.symmetricom.com</td>
<td>131.107.13.100</td>
<td>20</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>64</td>
</tr>
<tr>
<td>utcni2.ustim.net</td>
<td>206.246.122.250</td>
<td>20</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>64</td>
</tr>
<tr>
<td>nist-time.carsoncity.k1</td>
<td>206.246.122.250</td>
<td>20</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>64</td>
</tr>
<tr>
<td>50-77-201-185-static.h</td>
<td>206.246.122.250</td>
<td>20</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>64</td>
</tr>
<tr>
<td>host-24-56-178-140.bey</td>
<td>206.246.122.250</td>
<td>20</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>64</td>
</tr>
</tbody>
</table>

```python
5 import socket
6 # Set up a UDP socket
7 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
8 # send
9 #! 17 00 03 2a
10 MSG = str('%x17\x00\x03\x2a') + str('%x00')*4
11 HOSTNAME = '10.1.10.128'
12 PORTNO = 123
13 s.connect((HOSTNAME, PORTNO))
14 if len(MSG) != s.send(MSG):
15     # where to get error message "$!
16     print 'cannot send to %s(%d):' % (HOSTNAME, PORTNO)
17     raise SystemExit(1)
18 MAXLEN = 4098
19 (data,addr) = s.recvfrom(MAXLEN)
20 s.close()
21 print '%s(%d) said %s' % (addr[0], addr[1], data)
```
SSDP Flood

HTTP/1.1 200 OK
CACHE-CONTROL: max-age = 120
LOCATION: http://192.168.1.1:80/UPnP/IGD.xml
ST: urn:schemas-upnp-org:service:WANIPConnection:1
SERVER: System/1.0 UPnP/1.0 IGD/1.0
USN: uuid:WANConnection{9679d566-230a-49d3-92e5-421e9223eaef}
000000000000:0::urn:schemas-upnp-org:service:WANIPConnection:1

HTTP/1.1 200 OK
Cache-Control: max-age=120
Location: http://192.168.0.1:65535/rootDesc.xml
Server: Linux/2.4.22-1.2115.nptl UPnP/1.0 miniupnpd/1.0
ST: urn:schemas-upnp-org:device:InternetGatewayDevice:
USN: uuid:b1c5d60c-1dd1-11b2-8687-a0bc8f76d644:
:urn:schemas-upnp-org:device:InternetGatewayDevice:
DNS reflection flood

04:17:11.736254 IP x.x.x.x.53 > x.x.x.x6007: 45488| 22/0/0 DNSKEY, AAAA 2600:803:240::2, A 63.74.109.2, TXT "v=spf1
ip4:63.74.109.6 ip4:x.x.x.x ip4:x.x.x.x mx a:HIDDEN
04:17:11.736257 IP x.x.x.x.53 > x.x.x.x.30267: 4354 2/2/0 NS HIDDEN . (105)
04:17:11.736276 IP x.x.x.x.53 > x.x.x.x7519: 45488| 22/0/0 Type51, RRSIG, DNSKEY, DNSKEY, DNSKEY, DNSKEY[|domain
04:17:11.736287 IP x.x.x.x.53 > x.x.x.x.44609: 4354| 22/0/0 RRSIG, A 63.74.109.2, TXT "v=spf1
04:20:08.919421 IP x.x.x.x.53 > x.x.x.x.51286: 52156
13/4/2 SPF, DNSKEY, DNSKEY, NAPTR, TXT "v=spf1 a mx
ip4:x.x.x.x/21
ip4:x.x.x.x/16 ip6:2001:04F8::0/32
ip6:xxx:xxx:xx::xx/128 ~all", HIDDEN

[Diagram showing the process of a DNS reflection flood]
TCP-based attacks

➔ SYN Floods
➔ Out-Of-State Floods
➔ Rainbow/Xmas Floods
➔ TCP Anomaly
➔ TCB
SYN / Rainbow floods

SYN Flood

21:59:49.851423 IP X.X.X.X.33465 > Y.Y.Y.Y.80: Flags [S], seq 72209530, win 14600, options [mss 1460, sackOK, TS val 1428345032, ecr 0, nop, wscale 3], len 0

21:59:49.854397 IP 184.25.56.134.44560 > 178.132.241.16.80: Flags [S], seq 1993782773, win 14600, options [mss 1460, sackOK, TS val 1530530357, ecr 0, nop, wscale 3], length 0

Rainbow flood

01:49:36.107817 IP X.X.X.X.45240 > Y.Y.Y.Y.80: Flags [SRP.UW], seq 2733393585, ack 0, win 28679, urg 0, length 0
Application layer attacks

- Basic HTTP Floods
- Randomized HTTP Floods
- Cache-bypass HTTP Floods
- GET Floods
- POST Floods
- Slow Post
- HTTPS floods
- SSL handshake / renegotiation attacks
HTTP GET/POST Floods

GET Flood

0, ack 1, win14600, length 280
....E..@..6..I....P*.8..q+.P.9.....GET / HTTP/1.1
Accept:/*
Referer: http://www.victim.com/
Accept-Language: zh-cn
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows 5.1)
Host:www.victim.com
Pragma: no-cache
cache-control: private, max-age=0, no-cache
Connection:keep-alive
Detection

- Know your RFCs
- False positives vs. False negatives
- Anomaly detection (delta calculation)
- Appliances
- Graphs/Flow
- Into the hex
- Keen eye
Packet forensics

21:28:09.101512 IP X.X.X.X.3478 > Y.Y.Y.Y.80: Flags [S], seq 8420, win 21012, options [mss 729,nop,wscale 8,nop,nop,sackOK], length 0

21:28:09.101517 IP X.X.X.X.4041 > Y.Y.Y.Y.80: Flags [S], seq 1612447744:1612447752, win 59258, options [mss 19970,nop,eol], length 8
Mitigation Techniques

- Rate limiting
- ACLs (deny tcp any any match-all +rst)
- Blackholing
- Source Based NULL routing
- Stateful inspection devices
- SYN Cookies
- Signature Matching
- WAF
- Header Order
- DNS Truncated bit
- Network Ingress Filtering
On-Premise vs Cloud vs Hybrid

➔ Saturation
➔ SSL Based attacks
➔ Layer 7 Floods
➔ Response time
➔ Always on mitigation
➔ Traffic divertment
➔ Tune your machines
Cloud DDoS Solutions

- Distributed attacks require a distributed defense
- Industry SLA
- 24/7 SOCs
- Routes announced via BGP
- Leverages Anycast
- Tbps of dedicated attack capacity
- SSL?
- Threat intelligence
Thank you for listening!

Questions ?